

BASE economic evaluation insights and main conclusions

Alves, Filipe M.; Jeuken, Ad*; Meyer, Volker**; Gebhardt, Oliver**

*Deltares, The Netherlands

** Helmholtz Centre for Environmental Research - UFZ, Germany

27th September 2016 ECONADAPT Policy workshop The Dominican Hotel, Brussels

BASE Novel Methodologies & Applications

BASE Novel Methods and Tools

Participatory approaches, including participatory add-ons to Economic/Evaluation Tools

> Combining Scenario workshop & Adaptation Pathway (SWAP)

Participatory Benefit-Cost Analysis (PBCA)

Systemization of Experiences (adapted to climate change adaptation)

Participatory State of the Art

BASE Novel Applications of Existing Methods and Tools

Economic/Evaluation Tools

InVEST

Urban Heat

PRIMATE

Figure 2-5 Novel approaches & applications of existing tools developed through BASE: Novel methods and tools for participatory approaches, including participatory add-ons to economic/evaluation; and BASE novel applications of existing methods and tools for economic/evaluation.

Task and Deliverable 5.2: Economic evaluation of adaptation options

Lead authors: Volker Meyer, Oliver Gebhardt, Filipe Moreira Alves

Delivery date: 9/9/2015

Available in: http://base-adaptation.eu/sites/default/files/Deliverable 5 2 FINAL.pdf

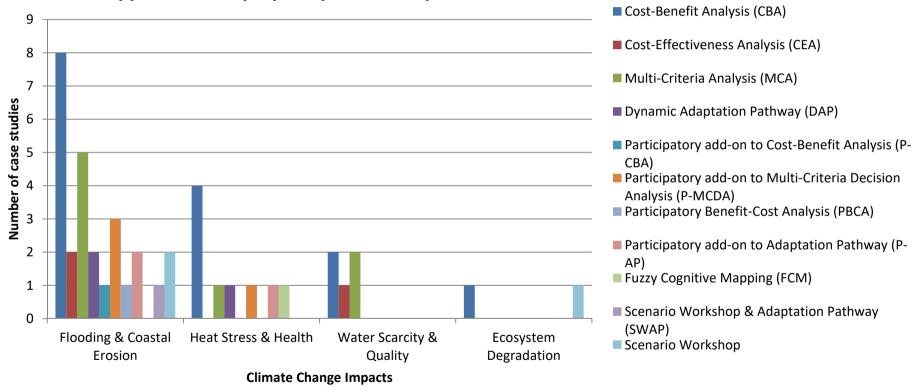
Task and Deliverable 6.3: EU- wide economic evaluation of adaptation to Climate change

Lead authors: Ad Jeuken, Laurens Bouwer, Andreas Burzel, Francesco Bosello, Enrica Decian, Luis Garote, Ana Iglesias, Marianne Zandersen, Timothy Taylor, Aline Chiabai, Sebastien Foudi, David Mendoza Tinoco, Dabo Guan, Zuzana Harmackova, Alessio Capriolo

Delivery date: 15/03/2016

Available in: http://base-adaptation.eu/sites/default/files/D.6.3 final.pdf

	Cost-Benefit Analysis	Cost-Effectiveness Analysis	Multi-criteria Analysis	Participatory Benefit-cost Analysis
Flooding & Coastal erosion	Kalajoki Copenhagen Rotterdam Aveiro Coast South Devon Coast Leeds Timmendorfer Strand Prague	Cascais Holstebro	Kalajoki Copenhagen Rotterdam Aveiro Coast Cascais	Cascais
Heat stress & Health	Jena Madrid		Jena	
Water scarcity	Alentejo Doñana		Doñana	Alentejo
Water quality Ecosystem degradation	Green roof	Kalajoki		



D5.2: Economic evaluation of adaptation options

Evaluation Approaches Employed by BASE European Case Studies

D5.2: Economic evaluation of adaptation options

Primary risks	Type of measure	Specific Adaptation measures	Case study	Costs	Benefits	NPV, BCR	Comments
		Dike reinforcement	Rotterdam	Total costs (costs of the measure & residual damage): 3,042 – 3,574 m EUR (rest and steam scenario)	(Dike reinforcement is set here as the baseline, therefore PVB is 0)	(Dike reinforcement is set here as the baseline, therefore NPV is 0)	Year of implementation: 2030 DR 5.5% (Dike reinforcement is set here as the baseline, therefore NPV is 0)
Floods (coastal, fluvial, pluvial)	Structural protection measure	Full closure with dams and sluices	Rotterdam	Total costs (costs of the measure & residual damage): 3,811 – 4,282 m EUR (rest and steam scenario)		Year of implementation: 2030 DR: 5.5%: NPV: -769 – -708	Results compared to the baseline option: dike reinforcement, rest and steam scenario
		Strengthening sea defences	South Devon (Coast)			NPV: -430 – -359 m EUR (1% and 5% discount rate)	Results compared to the baseline option: Maintaining existing sea defences, conducting repairs to damage to the rail infrastructure, cliffs and sea wall from storm events
		Installation of sluice gates up stream to hold back flood water	South Devon (Fluvial)			DR 1%: NPV: 1.64 m EUR DR 5%: NPV: 0.97 m EUR	Results compared to the baseline option: No intervention to protect the 50 at risk properties
	Retention & room for the river measures	Room for the River Small 1 (new and existing channels, land excavation, but in combination with dike reinforcement)	Rotterdam	Total costs (costs of the measure & residual damage): 3,033 – 3,562 m EUR (rest and steam scenario)		Year of implementation: 2030 DR 5.5%: NPV: 9 – 8 m EUR BCR: 1.4 – 1.6	Results compared to the baseline option: only dike reinforcement, rest and steam scenario

Selected case studies' evaluation results

Floods:

In large cities, large structural flood risk adaptation measures (dikes etc.) highly efficient (Copenhagen, Leeds, Prague)...also in combination with room-for-river measures (Rotterdam).

Heat stress:

Conflicting results e.g. for roof greening: efficient in Jena (well-established producers & favourable framework conditions) not efficient In Madrid (higher costs & incentives missing).

27th September 2016 ECONADAPT Policy workshop The Dominican Hotel, Brussels

Remarks/Conclusions:

- 1. Harmonization of economic analysis between different case studies is limited and single-recipy prescriptions for economic evaluations across Europe is not recommend;
- 2. Transferability of results/methods/processes among case studies is also limited and should be used with care;
- 3. Scaling up of local case-study specific results to National or European scales is limited and might bring unacceptable levels of uncertainty;
- 4. The choice of the best (efficient, effective, accepted) economic evaluation method and/or tool to apply in each case depends on several factors...
- **5.** Complementarity between different tools but also the increasing use of participatory methodologies is fundamental when dealing with uncertainty, with complexity, with growing demand for transparency in public decision-making processes and the need to engage local communities in adaptation (see BASE Task 5.3).

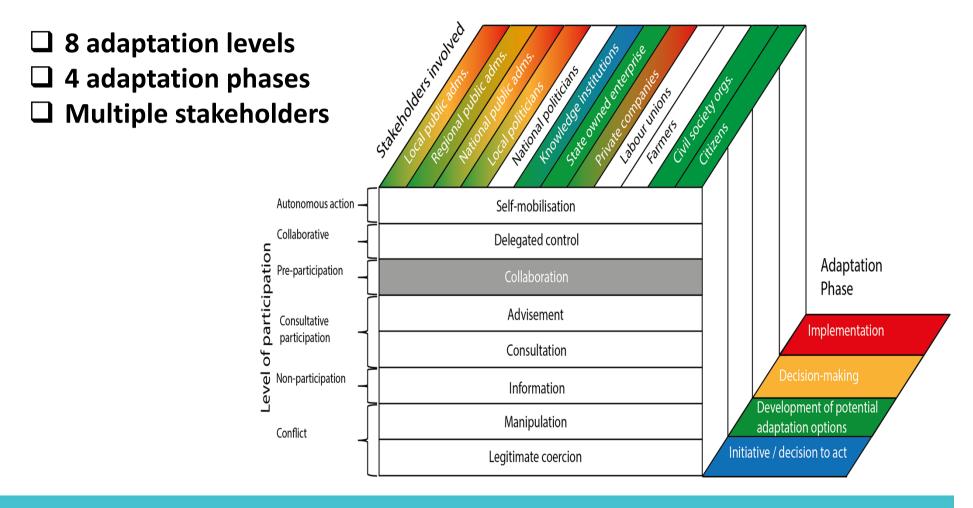
Main objective for the economic assessment

Assess the viability of a project Rank different projects regarding their impact Feed economic input into the decision-making process

Factor		
Objective	Pre-feasibility study	Investment decision
	Simple CEA, CBA or MCA	Comprehensive CBA, participatory MCA, RDM
Investment costs	rramer low Sho	high Medium to Long-term
	Simple CEA, CBA or MCA to a	month Comprehensive GBA; participatory MCA, RDM
Uncertainties	low	high
	Simple CEA, CBA or MCA	CBA or MCA with Monte-Carlo simulation, RDM, ROA, DAP, Heuristics
Number of evaluation criteri	a lowE	++ high++ ++++
	Institutional and CBA legal binding of	Comprehensive CBA, MCA
Data availability	low	high
	MCA	CBA, RDM

The research leading to these results has rece under Grant Agreement No. 308337 (Project B.

MCA


CEA

CBA

PBCA – Participatory Benefit-Cost Analysis

The use of participatory methodologies for economic analysis in Cascais, Portugal

Alves F. M., Vizinho A., Campos I., Penha-Lopes G.,

Methodology

Objective and concept

The Participatory Benefit-Cost Analysis (PBCA) is a hybrid methodology designed under FP7 project BASE by CCIAM for the participatory economic assessment of the costs and benefits of different adaptation measures. It was tested and used in the analysis of the Strategic Plan for Climate Change of Cascais.

It is a simple-to-use, resource efficient, solutions focused, pro-active, democratic tool for decision-makers.

The PBCA aims to combine the advantages and strengths of multi-criteria analysis (MCA) with the rationality of Cost-benefit Analysis (CBA), evolving from the simplicity of the Simplified Participatory Cost-Benefit Analysis (SPCBA) to deliver an all-inone procedure for action-researchers working in climate adaptation.

5-Step procedure Stakeholder grouping (5-7 participants) PCBA Matrix for one adaptation measure Introducing discounting Debate and selection of the discount rate · Final present value presentation by each group · Final present value comparisons and debate Example of a PBCA Matrix: "Green corridors" BENEFITS Flo COSTS 0.71 1 FINAL NET PRESENT 1.762

Results

8 Adaptation measures analysed

Adaptation measure	CB Short term	CB Long term	Discount rate	Final present value (original 2013-2050)	Final present value (3,5% 2050)
Green corridors	0.5	2.25	-1%	1.8653875	0.575125
Reforestation of the Sintra-Cascais Park	0.8	6.5	-5%	20.998175	1.33925
Action plan to manage invasive species	0.79	3	-5%	9.90185	0.8285
Eliminate water pollution points	2	2.42	196	1.84579	1.34969
Raising awareness in households regarding good sanitation practices	2.25	3.5	1%	2.34825	1.63075
Legislation towards bioclimatic construction norms	5.25	4.5	1%	4.19775	3.27525
Vector surveillance system in the municipality	3.5	5.5	1%	3.67225	2.54475
Awareness raising campaigns for heat waves and heat stress	1.25	2.2	1%	1.3939	0.9429

Conclusions

- It's more about the process than the result itself;
- It can lead to counter-literature, but intuitive, results, such as the selection of negative discount rates for some particular adaptation measures in some groups;
- Simple to use and understand, mainly if there is good facilitation/focalization
- The introduction of the time-factor and the inherent use of a discount rate enriches the debate and contributes significantly to the usefulness and maturation of the tool;
- Inexpensive to use and implement as it can be applied in the context of an existing workshop and represent a 1-hour add-on to the program with minimum marginal costs
- It allows stakeholders to point in the right direction regarding the most important effects of an action if deeper CBA is needed for quantitative valuation as well as identify expert shadow areas

Contacts

Adaptation

Stakeholders Financing

Mind Map

Tourism Sector

Turismo Centro de Portugal

Regional Strategy and National Strategy (PENT)

Dr. Pedro Vieira Machado

Comunidade Intermunicipal da Região de Aveiro

CIRA

POLIS Litoral - Ria de Aveiro

Operational Programme for Territorial Development

Local Business

Camping site

Vaga Splash ECORIA

RiaActiva

Energy Companies

ERSE

Regulatory Agency

EDP Foundation

Research investment needed and funded by EDP

Uni Aveiro VS EDP

on 'responsability issues

Possible Tax Hydropower profits

Ministry of Environment and Territorial Planning bringing accountability to EDP (?)

Media pressing for EDP responsibility and evolving DECO (responsible consumers association

TAXES & Incentives

Water Resources Tax

Portuguese Environmental Agency (APA)

Green Tax Reform inclusion

(Public Discussion the new work from the Gov.)

Tax Harmonization and simplification

New rules for the IMI

(Municipal Property Tax)

CSR Fund for Climate Change Adaptation from local Firms

Taxing Parking Places next to the beach (user-pay condition)

Regional FUND for CC Adaptation

Crowdfunding

Two Portuguese platforms: Massivemov and PPL

Contribution from BIG BUSINESS (private companies)

Ex. INDUSTRIES like SECIL; CIMPOR: PORTUCEL

Regionally managed

by CIRA Part also coming from Local/Regional TAXES

Task and Deliverable 6.3: EU- wide economic evaluation of adaptation to Climate change

This deliverable 6.3 of BASE is reporting in particular on the results of the **modelling exercises** executed within the project. Costs and benefits are explored for present and future climates, for different socio-economic developments paths and different adaptation strategies. For all models the SSP (Shared Socio-economic Pathways) 2 ('middle of the road'), 3 ('fragmented world') and 5 ('market driven development') have been explored as well as the climate scenarios according to RCP (Remote concentration pathway) 4.5 (average climate change) and 8.5 (high climate change) for 2050.

Floods

Agriculture

Health

The main methodological advances that have been made with respect to the modelling approaches applied for this deliverable are:

- 1. The more detailed sectorial studies on Floods, Agriculture and Health were used to recalibrate and parameterize AD-WITCH damage, adaptation cost, and adaptation effectiveness.
- 2. Crop patterns, land use, hydrological and agricultural production models have been combined to obtain new insights in effective adaptation.
- 3. New cost estimates on flood protection and adapted building were applied in the European scale flood model.
- 4. An improved IO-model has been applied to city flooding cases allowing for better insight in the variety, size and cause of indirect damages.

Aggregated results for floods

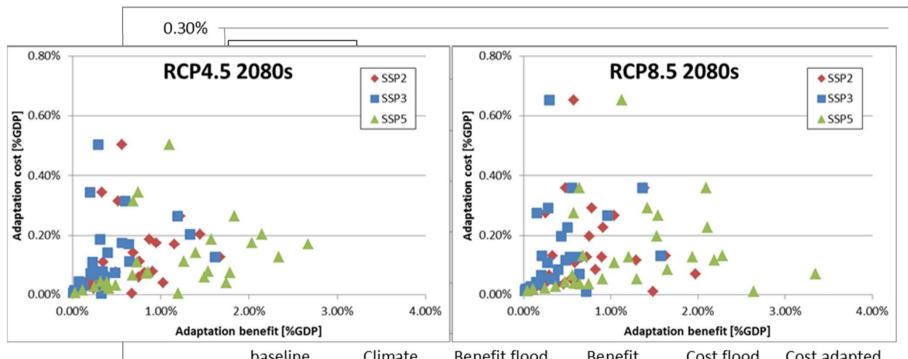
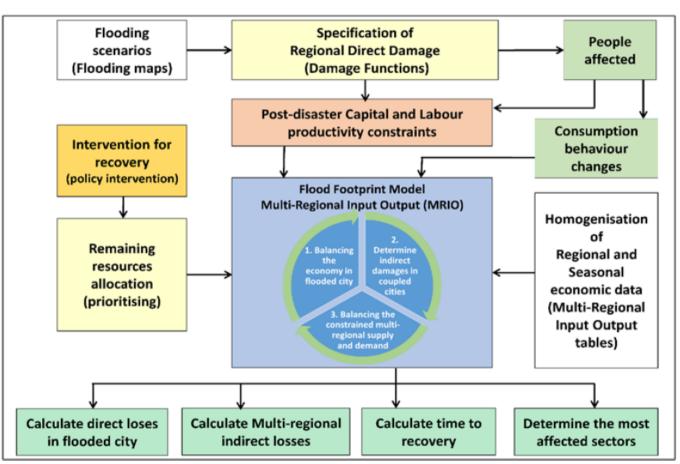


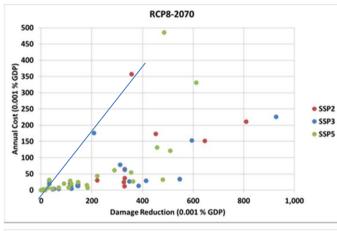
Figure 1 Annual adaptation costs and benefits of flood penefit of individual countries of current GDP (undiscounted), under RCP climate scenarios 4.5 and 8.5, and including SSP2, 3 and 5 scenarios

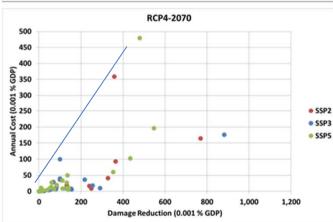


Aggregated results for floods

Much n complex picture -Indirect co floodin Sheffice

The research leading to the under Grant Agreement No.


Figure 11 The structure of food footprint model based on multi-regional input output (MRIO) model



Agricultural production

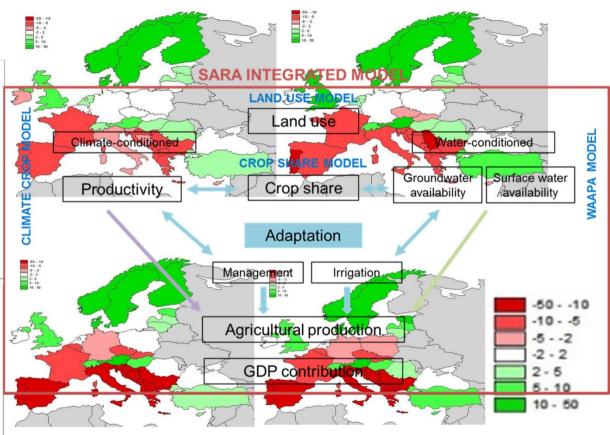
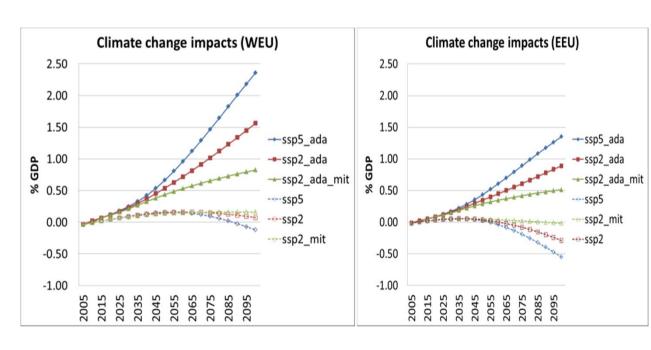


FIGURE 1 AVERAGE RESULTS BY COUNTRY OF CHANGES (%) IN AGRICULTURAL PRODUCTIVITY.
EMISSION SCENARIOS RCP4 (TOP) AND RCP8 (BOTTOM), IN SHORT TERM (LEFT) AND LONG TERM (RIGHT) TIME SLICES.

The research leading to these results has received funding from the European Commission's Seventh Framework Programme under Grant Agreement No. 308337 (Project BASE).

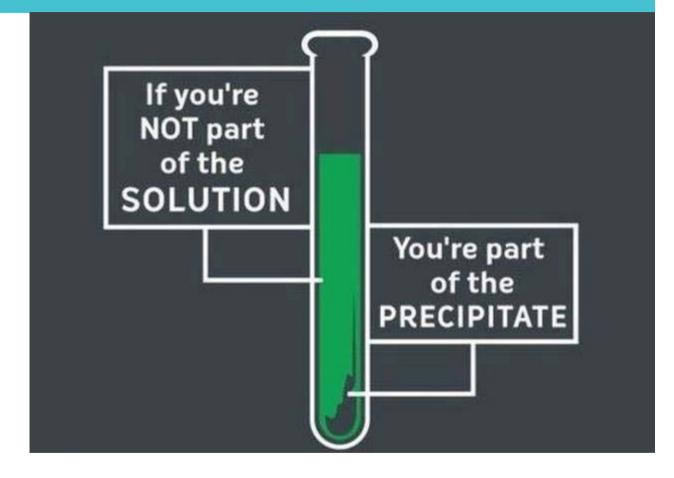

27th September 2016 ECONADAPT Policy workshop The Dominican Hotel, Brussels

Recalibration of the top-down AD-WITCH model with BASE findings - overall results for Western and Easter EU in the figures below:

- 1) Building flood protection up to a level of 1/100 year results in BCR > 1 for most countries and SSPs
- 2) Improving water efficiency management of agriculture results in BCR > 1 for all countries and scenarios
- 3) Introducing mitigation and adaptation into a global economic assessment results in positive effects on GDP in both Western and Eastern Europe (damage < 0% of GDP).

Take away messages:

- 1. Harmonization of economic analysis between different case studies is limited and single-recipy prescriptions for economic evaluations across Europe is not recommend. A tree-choice model can and should be developed;
- 2. Transferability of results/methods/processes among case studies is also limited and should be used with care. Does not apply necessarily to models and methods which can be easily adapted;
- 3. Using case specific data to calibrate and improve sectoral models can be key to reduce uncertainties. However it demands close and early stage alingment among researchers/practioners/local stakeholders;
- 4. Complementarity between different tools but also the increasing use of participatory methodologies is fundamental when dealing with uncertainty, with complexity, with growing demand for transparency in public decision-making processes and the need to engage local communities in adaptation.



Thank you!

Filipe Moreira Alves

fmalves@fc.ul.pt

www.base-adaptation.eu

